Resonant Breathwork as Multimodal Vagal–Interoceptive Modulation: An Empirical Synthesis of Non-invasive VNS, Breathing-Driven Interoception and Respiratory Tools
Abstract:
Resonant Breathwork is proposed as a layered, measurable intervention that modulates vagal activity and interoceptive processing through acoustic vocalization, respiratory mechanics, and biofeedback. This review synthesizes human empirical studies from 2022–2025 across five domains: (1) noninvasive transcutaneous auricular vagus nerve stimulation and acoustic or vocal vagal engagement; (2) interoception targets modulated by breathing; (3) respiratory rehabilitation tools, including oscillatory positive expiratory pressure and inspiratory muscle training; (4) virtual or augmented reality breath biofeedback; and (5) neuroimaging of high ventilation breathwork with music. Evidence shows taVNS can acutely increase vagal indices, with effects contingent on frequency and pulse width, while paced humming or singing near 0.1 Hz enhances respiratory sinus arrhythmia and positive affect. Breathing phase shapes perception and neural excitability; exhalation weighting and slow pacing amplify heartbeat evoked potentials and attention to internal signals. OPEP improves airway clearance and symptoms, and inspiratory training increases inspiratory strength with shifts toward parasympathetic balance, suggesting autonomic co benefits beyond pulmonary gains. XR delivery yields physiologic outcomes comparable to non XR biofeedback but improves engagement and transfer in stress laden contexts. Neuroimaging during high ventilation plus music reveals reduced perfusion in interoceptive cortex and increased perfusion in limbic regions alongside sympathetic activation and post session emotional relief. Findings align with a testable framework in which acoustic resonance, mechanical load, and feedback guided timing jointly modulate vagal efference and interoceptive circuitry, with translational potential for neurodivergent and post viral dysautonomia.
KeyWords:
Resonant breathwork, Transcutaneous auricular vagus nerve stimulation, Interoception, Heart rate variability, Oscillatory positive expiratory pressure
References:
- Ackland, G. L., Patel, A. B. U., Miller, S., Gutiérrez del Arroyo, A., Thirugnanasambanthar, J., Ravindran, J. I., & Chowienczyk, P. (2025). Non-invasive vagus nerve stimulation and exercise capacity in healthy volunteers: A randomized, double-blind, sham-controlled, crossover trial. European Heart Journal, 46(17), 1634–1644. https://doi.org/10.1093/eurheartj/ehaf037
- Alghamdi, S. M., Alsulayyim, A. S., Alasmari, A. M., Philip, K. E. J., Buttery, S. C., Banya, W. A. S., Polkey, M. I., Birring, S. S., & Hopkinson, N. S. (2023). Oscillatory positive expiratory pressure therapy in COPD (O-COPD): A randomised controlled trial. Thorax, 78(2), 136–143. https://doi.org/10.1136/thorax-2022-219077
- Alsop, D. C., Detre, J. A., Golay, X., Günther, M., Hendrikse, J., Hernandez-Garcia, L., & Wang, D. J. J. (2015). Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magnetic Resonance in Medicine, 73(1), 102–116. https://doi.org/10.1002/mrm.25197
- Atanackov, P., Peterlin, J., Derlink, M., Kovačič, U., Kejžar, N., & Bajrović, F. F. (2025). The acute effects of varying frequency and pulse width of transcutaneous auricular vagus nerve stimulation on heart rate variability in healthy adults: A randomized crossover controlled trial. Biomedicines, 13(3), 700. https://doi.org/10.3390/biomedicines13030700
- Campbell, M., McKenzie, J. E., Sowden, A., Katikireddi, S. V., Brennan, S. E., Ellis, S., & Thomson, H. (2020). Synthesis without meta-analysis (SWiM) in systematic reviews: Reporting guideline. BMJ, 368, l6890. https://doi.org/10.1136/bmj.l6890
- Cortez-Vázquez, G., Adriaanse, M., Burchell, G. L., Ostelo, R., Panayiotou, G., & Vlemincx, E. (2024). Virtual reality breathing interventions for mental health: A systematic review and meta-analysis of randomized controlled trials. Applied Psychophysiology and Biofeedback, 49(1), 1–21. https://doi.org/10.1007/s10484-023-09611-4
- Cumpston, M. S., Chandler, J., Li, T., Page, M. J., & Welch, V. A. (2022). Guidance in the Cochrane Handbook for Systematic Reviews of Interventions: New guidance relevant to public health reviews. Journal of Public Health, 44(4), e625–e634. https://doi.org/10.1093/pubmed/fdab400
- Damoun, N., Haddad, M., Trabelsi, K., & Souissi, N. (2024). Heart rate variability measurement and influencing factors: A narrative review. [Open-access review]. https://pmc.ncbi.nlm.nih.gov/articles/PMC11439429/
- Farb, N. A. S., Wald, C., McMurtry, B., Vogrin, G., Wilson, T. D., & Anderson, A. K. (2023). Interoceptive awareness of the breath preserves attention with widespread cortical deactivation. eNeuro, 10(6), ENEURO.0088-23.2023. https://doi.org/10.1523/ENEURO.0088-23.2023
- Gianlorenço, A. C., Pacheco-Barrios, K., da Silva, F. F., Deleuze, M., Leite, S. C.-P., & Fregni, F. (2024). Age as an effect modifier of the effects of transcutaneous auricular vagus nerve stimulation on heart rate variability in healthy subjects. Journal of Clinical Medicine, 13(14), 4267. https://doi.org/10.3390/jcm13144267
- Harting, C., Hehemann, L., Stetza, L., & Kayser, C. (2025). Respiration shapes response speed and accuracy with a systematic time lag. Proceedings of the Royal Society B, 292(2044), 20242566. https://doi.org/10.1098/rspb.2024.2566
- Higgins, J. P. T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M. J., & Welch, V. A. (Eds.). (2023). Cochrane handbook for systematic reviews of interventions (Version 6.5). Cochrane. https://training.cochrane.org/handbook/current
- Inbaraj, G., Rao, R. M., Ram, A., Bayari, S. K., Belur, S., & Prathyusha, P. V. (2022). Immediate effects of OM chanting on heart rate variability measures compared between experienced and inexperienced yoga practitioners. International Journal of Yoga, 15(1), 52–58. https://doi.org/10.4103/ijoy.ijoy_141_21
- Kaduk, K., Schulz, S. M., Sel, A., & Kuehn, S. (2025). Non-invasive auricular vagus nerve stimulation decreases heart-rate variability independent of caloric load: A randomized crossover study. Psychophysiology, 62(2), e70017. https://doi.org/10.1111/psyp.70017
- Kartar, A. A., Horinouchi, T., Örzsik, B., Anderson, B., Hall, L., Bailey, D., & Colasanti, A. (2025). Neurobiological substrates of altered states of consciousness induced by high-ventilation breathwork accompanied by music. PLOS ONE, 20(8), e0329411. https://doi.org/10.1371/journal.pone.0329411
- Kim, S.-R., Kim, T.-H., Lee, J.-S., Lee, S.-C., Chang, J.-H., Oh, Y.-M., & Lee, S.-W. (2023). Effectiveness of an oscillating positive expiratory pressure device in bronchiectasis with frequent exacerbations: A single-arm pilot study. BMC Pulmonary Medicine, 23, 141. https://doi.org/10.1186/s12890-023-02334-9
- Lalanza, J. F., Wyss, T., Stulz, N., & Ainsworth, B. (2023). Methods for heart rate variability biofeedback (HRVB): A critical review and practical recommendations. Applied Psychophysiology and Biofeedback, 48(3), 251–274. https://doi.org/10.1007/s10484-023-09582-6
- Lindner, T., Hirschhäuser, C., de Havenon, A., Nitsch, J., & Mutke, M. A. (2023). Current state and guidance on arterial spin labeling perfusion MRI in clinical practice. Magnetic Resonance in Medicine, 89(4), 1754–1776. https://doi.org/10.1002/mrm.29514
- Maestri, R., Pinna, G. D., Robbi, E., Cogliati, C., Bartoli, A., Gambino, G., Rengo, G., Montano, N., & La Rovere, M. T. (2024). Impact of optimized transcutaneous auricular vagus nerve stimulation on cardiac autonomic profile in healthy subjects and heart failure patients. Physiological Measurement, 45(7), Article ad5ef6. https://doi.org/10.1088/1361-6579/ad5ef6
- McNarry, M. A., Berg, R. M. G., Shelley, J., Hudson, J., Saynor, Z. L., Duckers, J., Lewis, K., Davies, G. A., & Mackintosh, K. A. (2022). Inspiratory muscle training enhances recovery post-COVID-19: A randomised controlled trial. European Respiratory Journal, 60(4), 2103101. https://doi.org/10.1183/13993003.03101-2021
- Michela, A., van der Meij, J., ter Heegde, F., Bijleveld, E., & Veling, W. (2022). Deep-breathing biofeedback trainability in a virtual-reality action game: A single-case design study with police trainers. Frontiers in Psychology, 13, 806163. https://doi.org/10.3389/fpsyg.2022.806163
- Neuroscience News. (2025, August 27). Breathwork and music trigger psychedelic-like bliss in the brain. https://neurosciencenews.com/breathwork-music-bliss-brain-29627/
- Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., & Moher, D. (2021). PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ, 372, n160. https://doi.org/10.1136/bmj.n160
- Percin, A., Özden, A. V., Yenisehir, S., Pehlivanoglu, B. E., & Yılmaz, R. C. (2024). The effect of in-ear and behind-ear transcutaneous auricular vagus nerve stimulation on autonomic function: A randomized, single-blind, sham-controlled study. Journal of Clinical Medicine, 13(15), 4385. https://doi.org/10.3390/jcm13154385
- Quigley, K. S., Kyzar, E. J., Ng, A., & Smith, R. (2024). Publication guidelines for human heart rate and respiratory measures in psychophysiology. Psychophysiology, 61(4), e14604. https://doi.org/10.1111/psyp.14604
- Sa-nguanmoo, P., Pratanaphon, S., Parameyong, A., Chawawisuttikool, J., Shinlapawittayatorn, K., Chattipakorn, N., & Chattipakorn, S. C. (2025). Inspiratory muscle training improves heart rate variability and respiratory muscle strength in obese young adults. PLOS ONE, 20(8), e0329623. https://doi.org/10.1371/journal.pone.0329623
- Sterne, J. A. C., Hernán, M. A., Reeves, B. C., Savović, J., Berkman, N. D., Viswanathan, M., & Higgins, J. P. T. (2016). ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ, 355, i4919. https://doi.org/10.1136/bmj.i4919
- Sterne, J. A. C., Savović, J., Page, M. J., Elbers, R. G., Blencowe, N. S., Boutron, I., & Higgins, J. P. T. (2019). RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ, 366, l4898. https://doi.org/10.1136/bmj.l4898
- Suzuki, Y., Helle, M., Petr, J., Ivanov, D., van Osch, M. J. P., Teeuwisse, W. M., & Alsop, D. C. (2024). ASL lexicon and reporting recommendations: A consensus statement from the ISMRM OSIPI initiative. Magnetic Resonance in Medicine, 92(2), 469–488. https://doi.org/10.1002/mrm.29815
- Tanzmeister, S., Rominger, C., Weber, B., Tatschl, J. M., & Schwerdtfeger, A. R. (2022). Singing at 0.1 Hz as a resonance-frequency intervention to reduce cardiovascular stress reactivity? Frontiers in Psychiatry, 13, 876344. https://doi.org/10.3389/fpsyt.2022.876344
- Trivedi, G., Bhalerao, S., & Patwardhan, A. (2023). Humming (simple Bhramari pranayama) as a stress buster: A Holter-based HRV study across daily activities. Cureus, 15(4), e37294. https://doi.org/10.7759/cureus.37294
- University of Sussex & Brighton and Sussex Medical School. (2025, August 28). Breathwork and the brain: New study reveals how controlled breathing alters consciousness. https://www.bsms.ac.uk/about/news/2025/08-28-breathwork-and-the-brain-study-reveals-how-controlled-breathing-alters-consciousness.aspx
- Whiting, P. F., Rutjes, A. W. S., Westwood, M. E., Mallett, S., Deeks, J. J., Reitsma, J. B., & QUADAS-2 Group. (2011). QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Annals of Internal Medicine, 155(8), 529–536. https://doi.org/10.7326/0003-4819-155-8-201110180-00009
- Zaccaro, A., Della Penna, F., Mussini, E., Parrotta, E., Perrucci, M. G., Costantini, M., & Ferri, F. (2024). Attention to cardiac sensations enhances the heartbeat-evoked potential during exhalation. iScience, 27(4), 109586. https://doi.org/10.1016/j.isci.2024.109586